OpenFlow Random Host Mutation: Transparent Moving Target Defense using Software Defined Networking

Jafar Haadi Jafarian, Ehab Al-Shaer, Qi Duan

2012 Proceedings of the first workshop on Hot topics in SDN
Outline

Introduction

What is “moving target defense” (MTD)?

Overview of OF-RHM

Objectives

Related Works

Design Details of OF-RHM

Range allocation & vIP mutation
Introduction
Introduction

Attacker is going to launch an attack.

Identify active IP address in a target domain.

Frequently changing IP address of hosts.

Proactive Moving Target Defense (MTD)

Static Configuration

make it easy to perform

Send probes to random IP address, identified and attack when target responds.

Use scanning tools or worms.

countermeasure is

Static Configuration

have to

by
Introduction

Moving Target Defense (MTD)

Enterprise networks sometimes have many public and private hosts accessible from outside.

→ Become targets of most of the attackers.

How about DHCP and NAT?

Ans: Insufficient to provide proactive countermeasure because IP mutation is infrequent and traceable.
Introduction

OpenFlow Random Host Mutation (OF-RHM)

A MTD architecture implementation utilizing OpenFlow.

With high unpredictability and rate while maintaining configuration integrity and minimizing operation overhead.
Overview of OF-RHM
Overview of OF-RHM

OpenFlow Random Host Mutation (OF-RHM)

mutates the IP addresses of end-hosts “randomly” and “frequently”

Two objectives:

i. IP mutations must be transparent to the end-hosts.

ii. IP mutations must be performed with high unpredictability and speed.
Overview of OF-RHM

Related Work

APOD

Uses **hopping tunnels** based on address and port randomization.

Require cooperation of both client and server. → **Not transparent.**

NASR

Based on DHCP frequent updates.

Not transparent to end-hosts. (require reconfiguration for hosts.)
Overview of OF-RHM

Two objectives of OF-RHM

i. IP mutations must be transparent to the end-hosts.

 By associated each host with random, short-lived virtual IP address (vIP) at regular interval.

 Q1: What’s the translation mechanism of rIP and vIP?

 Q2: How to design the architecture to attain such a mechanism?

ii. IP mutations must be performed with high unpredictability and speed.
Overview of OF-RHM

Two objectives of OF-RHM

i. IP mutations must be transparent to the end-hosts.

ii. IP mutations must be performed with high unpredictability and speed.

By selecting mutated vIP randomly from entire unused address space in the network.

Q3: How to find unused IP address?

Q4: How to assign vIPs to hosts to satisfy the constraints:
Overview of OF-RHM

Q1: What’s the translation mechanism of rIP and vIP?

Q2: How to design the architecture to attain such a mechanism?

Q3: How to find unused IP address?

Q4: How to assign vIPs to hosts to satisfy the constraints?

mutation unpredictability.

minimum required mutation rate of all hosts.
Overview of OF-RHM

Q4: How to assign vIPs to hosts to satisfy the constraints:

- mutation unpredictability.
- minimum required mutation rate of all hosts.

Answer:

Formalize the problem as constraint satisfaction problem and use SMT solver to solve the problem.

But how to formalize?
Design Details of OF-RHM
Problem Definition & Formalization

In OF-RHM, each host is associated with an unused address range based on specific requirement.

At each mutation, a vIP is choose from this range for each mutation interval.

Q3: How to find unused IP address?
Problem Definition & Formalization

Q3: How to find unused IP address?

Given used address $A_1, A_2, \ldots A_m$

The unused address is determined by simply masking the full network address space A as follows:

$$A_{unused} = A \cap \neg(A_1 \cup A_2 \cup \ldots \cup A_n)$$
Problem Definition & Formalization

Main problem

Suppose each host belong to a subnet.

Given unused ranges \{r_1, r_2, ..., r_m\} and subnet \{s_1, s_2, ..., s_n\}, what is the appropriate assignment scheme such that the following objectives are achieved:

Objective 1: the range assigned to the subnet must include enough IP address to satisfy minimum required mutation during interval T.

Objective 2: Unpredictability and mutation rates must be maximized by allocating all unused address ranges.
Problem Definition & Formalization

Mutation Rate Constraint

based on objective1

The total number of vIPs of all hosts in subnet sk during T must
less than the aggregate size of all ranges assigned to sk

Range Allocation Constraint

based on objective2 & routing constraint

Each range must be assigned to one exactly one subnet.

Range Distribution Constraint

Range must be assigned to subnets proportionate to their total
required mutation rate.
Problem Definition & Formalization

Since the problem of assigning ranges to subnet is **NP-hard**.

After formalizing the problem with several constraint, we solve the assigning problem with **SMT (Satisfiability Modulo Theories) solver**.

If no solution is found, we relax constraint value, and assert the constraints

$$
\forall k, P_k = \frac{T \times \sum_{1 \leq i \leq n} c_{ik} R_i}{\sum_{1 \leq j \leq m} b_{jk} |r_j|}
$$

$$
P_a = \frac{T \times \sum_{1 \leq i \leq n} R_i}{\sum_{1 \leq j \leq m} |r_j|}
$$

$$
\forall k, |P_k - P_a| < \delta
$$

relax this value
Overview of OF-RHM

Q1: What’s the translation mechanism of rIP and vIP?

Q2: How to design the architecture to attain such a mechanism?

Q3: How to find unused IP address?

Q4: How to assign vIPs to hosts to satisfy the constraints?

- mutation unpredictability,
- minimum required mutation rate of all hosts.
Design Details of OF-RHM

Figure 1: The architecture of OF-RHM network
Design Details of OF-RHM

Q1: What’s the translation mechanism of rIP and vIP?

(2) Authorize Request

(3) Install flow rules

Host1
rIP = r1
vIP = v1

(1) dst = r2
src = r1

OF-Switch

(4) dst = v2
src = v1

(5) dst = r2
src = v1

(6) src = r2
dst = v1

(7) src = v2
dst = v1

Host2
rIP = r2
vIP = v2

(8) src = v2
dst = r1
Protocol of OF-RHM

Protocol: Supporting two scenarios, communicate using **host IP** or **host name**.

![Diagram](image1)

Figure 2: Communication via name

![Diagram](image2)

Figure 3: Communication via rIP address
Overview of OF-RHM

Q1: What’s the translation mechanism of rIP and vIP?

Q2: How to design the architecture to attain such a mechanism?

Q3: How to find unused IP address?

Q4: How to assign vIPs to hosts to satisfy the constraints?

- mutation unpredictability.
- minimum required mutation rate of all hosts.
Architectture of OF-RHM

Implementation of this technique requires two major components:

a. Subnet gateways to perform rIP-vlP translation (OpenFlow switch)

b. A central management authority which coordinates mutation across network. (OpenFlow Controller)

These components are costly in traditional network. (That’s why they choose SDN.)

a. Realtime global configuration.

b. Synchronization problem in decentralized environment.
Architecture of OF-RHM

In OF-RHM, the **controller** performs the following task:

a. coordinates mutation process across OpenFlow switch.

b. determination optimal set of vIPs using SMT solver.

c. manages active connections by installing flows.

d. handles DNS updates

In OF-RHM, the **switch** performs

a. perform rIP-vIP translations.
Overview of OF-RHM

Q1: What’s the translation mechanism of rIP and vIP?

Q2: How to design the architecture to attain such a mechanism?

Q3: How to find unused IP address?

Q4: How to assign vIPs to hosts to satisfy the constraints?

mutation unpredictability.

minimum required mutation rate of all hosts.
Evaluation
Evaluation

Environment setting

Create a network of OpenFlow switches by Mininet.

Routing was handled by NOX controller.

Evaluation Target

Random external scanner

Worms

Overhead

Figure 1: The architecture of OF-RHM network
Evaluation

Random external scanner

Most attackers use scanning tools such as **Nmap** to discover active hosts.
Evaluation

Random external scanner

Run 100 Nmap scan on the Mininet network, which consists of 2^{10} hosts.

Compare the results with ground truth (by initial scan).

Results

Not more than 1% vIP address are discovered in any scan.
Evaluation

Random external scanner

Figure 4: Consistency of consecutive Nmap scan reports with ground truth
Evaluation

Worms

The effectiveness of a scanning strategy is determined by decreasing the probability of multiple scanning of a specific IP.

OF-RHM support blind mutation & weighted mutation, which make it effective against scanning worm.
Evaluation

Worms

Figure 5: Worm propagation for various network setups
Evaluation

Overhead

Figure 6: Required IP address size for various mutation intervals and number of hosts

Figure 7: Flow table length for different session establishment rates and session durations
Summarize
Summarize

Provide Moving Target Defense

Associated real IP with virtual IP

Architecture Implementation

Range Allocation Problem & vIP mutation

Formalize constraints, solve by SMT solver

Controller → coordinates mutation

OpenFlow switch → rIP-vIP translation

Experiment Results

Protect hosts against → Hitlist-attack, worms

Limitation → Scanner use IP address
Conclusions
Conclusions

OF-RHM is a MTD architecture implementation utilizing OpenFlow.

With **high unpredictability and rate**, and is transparent to end-hosts.

The evaluation results show that OF-RHM can effectively prevent hosts from being scanning by **some external scanners and worms**.

Still weak to protect detection against external **scanners use IP address** to collect information.
Q & A
Thanks!